
Chapter 7

Kerr-Lens and Additive Pulse
Mode Locking

There are many ways to generate saturable absorber action. One can use
real saturable absorbers, such as semiconductors or dyes and solid-state laser
media. One can also exploit artificial saturable absorbers. The two most
prominent artificial saturable absorber modelocking techniques are called
Kerr-Lens Mode Locking (KLM) and Additive Pulse Mode Locking (APM).
APM is sometimes also called Coupled-Cavity Mode Locking (CCM). KLM
was invented in the early 90’s [1][2][3][4][5][6][7], but was already predicted
to occur much earlier [8][9][10]·

7.1 Kerr-Lens Mode Locking (KLM)

The general principle behind Kerr-Lens Mode Locking is sketched in Fig. 7.1.
A pulse that builds up in a laser cavity containing a gain medium and a Kerr
medium experiences not only self-phase modulation but also self focussing,
that is nonlinear lensing of the laser beam, due to the nonlinear refractive in-
dex of the Kerr medium. A spatio-temporal laser pulse propagating through
the Kerr medium has a time dependent mode size as higher intensities ac-
quire stronger focussing. If a hard aperture is placed at the right position
in the cavity, it strips of the wings of the pulse, leading to a shortening of
the pulse. Such combined mechanism has the same effect as a saturable ab-
sorber. If the electronic Kerr effect with response time of a few femtoseconds
or less is used, a fast saturable absorber has been created. Instead of a sep-
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Figure 7.1: Principle mechanism of KLM. The hard aperture can be also
replaced by the soft aperture due to the spatial variation of the gain in the
laser crystal.

arate Kerr medium and a hard aperture, the gain medium can act both as a
Kerr medium and as a soft aperture (i.e. increased gain instead of saturable
absorption). The sensitivity of the laser mode size on additional nonlinear
lensing is drastically enhanced if the cavity is operated close to the stability
boundary of the cavity. Therefore, it is of prime importance to understand
the stability ranges of laser resonators. Laser resonators are best understood
in terms of paraxial optics [11][12][14][13][15].

7.1.1 Review of Paraxial Optics and Laser Resonator
Design

The solutions to the paraxial wave equation, which keep their form during
propagation, are the Hermite-Gaussian beams. Since we consider only the
fundamental transverse modes, we are dealing with the Gaussian beam

U(r, z) =
Uo

q(z)
exp

∙
−jk r2

2q(z)

¸
, (7.1)
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with the complex q-parameter q = a+ jb or its inverse

1

q(z)
=

1

R(z)
− j

λ

πw2(z)
. (7.2)

The Gaussian beam intensity I(z, r) = |U(r, z)|2 expressed in terms of the
power P carried by the beam is given by

I(r, z) =
2P

πw2(z)
exp

∙
− 2r2

w2(z)

¸
. (7.3)

The use of the q-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z1 to z2, the variation of the beam
parameter q is simply governed by

q2 = q1 + z2 − z1, (7.4)

where q2 and q1 are the beam parameters at z1 and z2. If the beam waist,
at which the beam has a minimum spot size w0 and a planar wavefront
(R = ∞), is located at z = 0, the variations of the beam spot size and the
radius of curvature are explicitly expressed as

w(z) = wo

"
1 +

µ
λz

πw2o

¶2#1/2
, (7.5)

and

R(z) = z

"
1 +

µ
πw2o
λz

¶2#
. (7.6)

The angular divergence of the beam is inversely proportional to the beam
waist. In the far field, the half angle divergence is given by,

θ =
λ

πwo
, (7.7)

as illustrated in Figure 7.2.
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Figure 7.2: Gaussian beam and its characteristics.

Due to diffraction, the smaller the spot size at the beam waist, the larger
the divergence. The Rayleigh range is defined as the distance from the waist
over which the beam area doubles and can be expressed as

zR =
πw2o
λ

. (7.8)

The confocal parameter of the Gaussian beam is defined as twice the Rayleigh
range

b = 2zR =
2πw2o
λ

, (7.9)

and corresponds to the length over which the beam is focused. The propa-
gation of Hermite-Gaussian beams through paraxial optical systems can be
efficiently evaluated using the ABCD-law [11]

q2 =
Aq1 +B

Cq1 +D
(7.10)

where q1 and q2 are the beam parameters at the input and the output planes
of the optical system or component. The ABCD matrices of some optical
elements are summarized in Table 7.1. If a Gaussian beam with a waist w01
is focused by a thin lens a distance z1 away from the waist, there will be a
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Figure by MIT OCW.
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new focus at a distance

z2 = f +
(z1 − f)f2

(z1 − f)2 +
³
πw201
λ

´2 , (7.11)

and a waist w02

1

w202
=

1

w201

µ
1− z1

f

¶2
+
1

f2

³πw01
λ

´2
(7.12)

Figure 7.3: Focusing of a Gaussian beam by a lens.
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Optical Element ABCD-Matrix

Free Space Distance L
µ
1 L
0 1

¶
Thin Lens with
focal length f

µ
1 0
−1/f 1

¶
Mirror under Angle
θ to Axis and Radius R
Sagittal Plane

µ
1 0

−2 cos θ
R

1

¶
Mirror under Angle
θ to Axis and Radius R
Tangential Plane

µ
1 0
−2

R cos θ
1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Sagittal Plane

µ
1 d

n

0 1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Tangential Plane

µ
1 d

n3

0 1

¶

Table 7.1: ABCD matrices for commonly used optical elements.

Figure 7.4: Two-Mirror Resonator with curvedmirrors with radii of curvature
R1 and R2.

The resonator can be unfolded for an ABCD-matrix analysis, see Figure
7.5.

7.1.2 Two-Mirror Resonators

We consider the two mirror resonator shown in Figure 7.4.
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Figure 7.5: Two-mirror resonator unfolded. Note, only one half of the fo-
cusing strength of mirror 1 belongs to a fundamental period describing one
resonator roundtrip.

The product of ABCD matrices describing one roundtrip according to
Figure 7.5 are then given by

M =

µ
1 0
−1
2f1

1

¶µ
1 L
0 1

¶µ
1 0
−1
f2

1

¶µ
1 L
0 1

¶µ
1 0
−1
2f1

1

¶
(7.13)

where f1 = R1/2, and f2 = R2/2. To carry out this product and to formulate
the cavity stability criteria, it is convenient to use the cavity parameters
gi = 1−L/Ri, i = 1, 2. The resulting cavity roundtrip ABCD-matrix can be
written in the form

M =

µ
(2g1g2 − 1) 2g2L

2g1 (g1g2 − 1) /L (2g1g2 − 1)
¶
=

µ
A B
C D

¶
. (7.14)

Resonator Stability

The ABCD matrices describe the dynamics of rays propagating inside the

resonator. An optical ray is characterized by the vector r=
µ

r
r0

¶
, where r

is the distance from the optical axis and r0 the slope of the ray to the optical
axis. The resonator is stable if no ray escapes after many round-trips, which
is the case when the eigenvalues of the matrix M are less than one. Since
we have a lossless resonator, i.e. det|M | = 1, the product of the eigenvalues
has to be 1 and, therefore, the stable resonator corresponds to the case of a
complex conjugate pair of eigenvalues with a magnitude of 1. The eigenvalue
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equation to M is given by

det |M − λ · 1| = det
¯̄̄̄µ

(2g1g2 − 1)− λ 2g2L
2g1 (g1g2 − 1) /L (2g1g2 − 1)− λ

¶¯̄̄̄
= 0, (7.15)

λ2 − 2 (2g1g2 − 1)λ+ 1 = 0. (7.16)

The eigenvalues are

λ1/2 = (2g1g2 − 1)±
q
(2g1g2 − 1)2 − 1, (7.17)

=

½
exp (±θ) , cosh θ = 2g1g2 − 1, for |2g1g2 − 1| > 1
exp (±jψ) , cosψ = 2g1g2 − 1, for |2g1g2 − 1| ≤ 1 .(7.18)

The case of a complex conjugate pair with a unit magnitude corresponds to
a stable resontor. Therfore, the stability criterion for a stable two mirror
resontor is

|2g1g2 − 1| ≤ 1. (7.19)

The stable and unstable parameter ranges are given by

stable : 0 ≤ g1 · g2 = S ≤ 1 (7.20)

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (7.21)

where S = g1 · g2, is the stability parameter of the cavity. The stabil-
ity criterion can be easily interpreted geometrically. Of importance are
the distances between the mirror mid-points Mi and cavity end points, i.e.
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 7.6.

Figure 7.6: The stability criterion involves distances between the mirror mid-
points Mi and cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri.
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The following rules for a stable resonator can be derived from Figure 7.6
using the stability criterion expressed in terms of the distances Si. Note, that
the distances and radii can be positive and negative

stable : 0 ≤ S1S2
R1R2

≤ 1. (7.22)

The rules are:

• A resonator is stable, if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable, if the radii do not overlap or one lies within
the other.

Figure 7.7 shows stable and unstable resonator configurations.

Figure 7.7: Illustration of stable and unstable resonator configurations.

For a two-mirror resonator with concave mirrors and R1 ≤ R2, we obtain
the general stability diagram as shown in Figure 7.8. There are two ranges
for the mirror distance L, within which the cavity is stable, 0 ≤ L ≤ R1 and
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R1

R1
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R2 R2

R2

R2

R2

R2

Figure by MIT OCW.
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Figure 7.8: Stabile regions (black) for the two-mirror resonator.

R2 ≤ L ≤ R1+R2. It is interesting to investigate the spot size at the mirrors
and the minimum spot size in the cavity as a function of the mirror distance
L.

Resonator Mode Characteristics

The stable modes of the resonator reproduce themselves after one round-trip,
i.e. from Eq.(7.10) we find

q1 =
Aq1 +B

Cq1 +D
(7.23)

The inverse q-parameter, which is directly related to the phase front curva-
ture and the spot size of the beam, is determined byµ

1

q

¶2
+

A−D

B

µ
1

q

¶
+
1−AD

B2
= 0. (7.24)

The solution is µ
1

q

¶
1/2

= −A−D

2B
± j

2 |B|
q
(A+D)2 − 1 (7.25)

If we apply this formula to (7.15), we find the spot size on mirror 1µ
1

q

¶
1/2

= − j

2 |B|
q
(A+D)2 − 1 = −j λ

πw21
. (7.26)

or

w41 =

µ
2λL

π

¶2
g2
g1

1

1− g1g2
(7.27)

=

µ
λR1
π

¶2
R2 − L

R1 − L

µ
L

R1 +R2 − L

¶
. (7.28)
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By symmetry, we find the spot size on mirror 3 via switching index 1 and 2:

w42 =

µ
2λL

π

¶2
g1
g2

1

1− g1g2
(7.29)

=

µ
λR2
π

¶2
R1 − L

R2 − L

µ
L

R1 +R2 − L

¶
. (7.30)

The intracavity focus can be found by transforming the focused Gaussian
beam with the propagation matrix

M =

µ
1 z1
0 1

¶µ
1 0
−1
2f1

1

¶
=

µ
1− z1

2f1
z1

−1
2f1

1

¶
, (7.31)

to its new focus by properly choosing z1, see Figure 7.9.

Figure 7.9: Two-mirror resonator

A short calculation results in

z1 = L
g2 (g1 − 1)

2g1g2 − g1 − g2
(7.32)

=
L(L−R2)

2L−R1 −R2
, (7.33)

and, again, by symmetry

z2 = L
g1 (g2 − 1)

2g1g2 − g1 − g2
(7.34)

=
L(L−R1)

2L−R1 −R2
= L− z1. (7.35)

R1

R2

0

Wo

z2
z-z1

L

Figure by MIT OCW.
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The spot size in the intracavity focus is

w4o =

µ
λL

π

¶2
g1g2 (1− g1g2)

(2g1g2 − g1 − g2)2
(7.36)

=

µ
λ

π

¶2
L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2 . (7.37)

All these quantities for the two-mirror resonator are shown in Figure 7.11.
Note, that all resonators and the Gaussian beam are related to the confocal
resonator as shown in Figure 7.10.

Figure 7.10: Two-mirror resonator and its relationship with the confocal
resonator.

R1 R2

R

L

General Resonator

Confocal Resonator

Figure by MIT OCW.
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Figure 7.11: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2,
z1 and z2 for the two-mirror resonator with R1 = 10 cm and R2 = 11 cm.
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7.1.3 Four-Mirror Resonators

More complex resonators, like the four-mirror resonator depicted in Figure
7.12 a) can be transformed to an equivalent two-mirror resonator as shown
in Figure 7.4 b) and c)

Figure 7.12: a) Four-mirror resonator with gain medium of refractive index
n, and thickness t. Folding angles have to be adjusted for astigmatism com-
pensation. b) Equivalent lens cavity. Note that the new focal length do not
yet account for the different equivalent radii of curvature due to nonnormal
incidence on the mirrors. c) Equivalent two-mirror cavity with imaged end
mirrors.

Each of the resonator arms (end mirror,L1, R1) or (end mirror, L2, R2) is
equivalent to a new mirror with a new radius of curvature R01/2 positioned a
distance d1/2 away from the old reference plane [12]. This follows simply from
the fact that each symmetric optical system is equivalent to a lens positioned
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at a distance d from the old reference plane

M =

µ
A B
C A

¶
=

µ
1 d
0 1

¶µ
1 0
−1
f

1

¶µ
1 d
0 1

¶
(7.38)

=

Ã
1− d

f
d
³
2− d

f

´
−1
f

1− d
f

!
with

d =
A− 1
C

(7.39)

−1
f

= C

The matrix of the resonator arm 1 is given by

M =

µ
1 0
−2
R1

1

¶µ
1 2L1
0 1

¶µ
1 0
−2
R1

1

¶
=

Ã
1− 4L1

R1
2L1

−4
R1

³
1− 2L1

R1

´
1− 4L1

R1

!
(7.40)

from which we obtain

d1 = −R1
2

1

1−R1/(2L1)
, (7.41)

R01 = −
µ
R1
2

¶2
1

L1 [1−R1/(2L1)]
. (7.42)

For arm lengths L1/2 much larger than the radius of curvature, the new radius
of curvature is roughly by a factor of R1

4L1
smaller. Typical values are R1 = 10

cm and L1 = 50 cm. Then the new radius of curvature is R01 = 5 mm. The
analogous equations apply to the other resonator arm

d2 = −R2
2

1

1−R2/(2L2)
, (7.43)

R02 = −
µ
R2
2

¶2
1

L2 [1−R2/(2L2)]
. (7.44)

Note that the new mirror radii are negative for Ri/Li < 1. The new distance
L0 between the equivalent mirrors is then also negative over the region where
the resonator is stable, see Fig.7.8. We obtain

L0 = L+ d1 + d2 = L− R1 +R2
2

− δ (7.45)
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δ =
R1
2

∙
1

1−R1/(2L1)
− 1
¸
+

R2
2

∙
1

1−R2/(2L2)
− 1
¸

(7.46)

= −(R01 +R02) (7.47)

or

L =
R1 +R2
2

− (R01 +R02) + L0 (7.48)

From the discussion in section 7.1.2, we see that the stability ranges
cover at most a distance δ. Figure 7.13 shows the resonator characteristics as
a function of the cavity length L for the following parameters R1 = R2 = 10
cm and L1 = 100 cm and L2 = 75 cm, which lead to

d1 = −5.26 cm
R01 = −0.26 cm , (7.49)

d2 = −5.36 cm
R02 = −0.36 cm , (7.50)

L0 = L− 10.62 cm (7.51)

Note, that the formulas (7.27) to (7.37) can be used with all quantities re-
placed by the corresponding primed quantities in Eq.(7.49) - (7.51). The
result is shown in Fig. 7.13. The transformation from L to L0

0
transforms

the stability ranges according to Fig. 7.14. The confocal parameter of the
laser mode is approximately equal to the stability range.

Astigmatism Compensation

So far, we have considered the curved mirrors under normal incidence. In a
real cavity this is not the case and one has to analyze the cavity performance
for the tangential and sagittal beam separately. The gain medium, usually a
thin plate with a refractive index n and a thickness t, generates astigmatism.
Astigmatism means that the beam foci for sagittal and tangential plane are
not at the same position. Also, the stablity regions of the cavity are different
for the different planes and the output beam is elliptical. This is so, because
a beam entering a plate under an angle refracts differently in both planes, as
described by different ABCD matricies for tangential and sagittal plane, see
Table 7.1.Fortunately, one can balance the astigmatism of the beam due to
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Figure 7.13: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2,
z1 and z2 for the four-mirror resonator with R1 = R2 = 10 cm, L1 = 100 cm
and L2 = 75 cm.
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Figure 7.14: Transformed stability range for the four mirror resonator with
R = (R1 +R2)/2.

the plate by the astigmatism introduced by the curved mirrors at a specific
incidence angle θ on the mirrors [12]. The focal length of the curved mirrors
under an angle are given by

fs = f/ cos θ

ft = f · cos θ
(7.52)

The propagation distance in a plate with thickness t under Brewster’s angle is
given by t

√
n2 + 1/n. Thus, the equivalent traversing distances in the sagittal

and the tangential planes are (Table 7.1),

ds = t
√
n2 + 1/n2

df = t
√
n2 + 1/n4

(7.53)

The different distances have to compensate for the different focal lengths in
the sagittal and tangential planes. Assuming two idential mirrors R = R1 =
R2, leads to the condition

ds − 2fs = dt − 2ft. (7.54)

With f = R/2 we find

R sin θ tan θ = Nt, where N =
√
n2 + 1

n2 − 1
n4

(7.55)

Note, that t is the thickness of the plate as opposed to the path length of the
beam in the plate. The equation gives a quadratic equation for cosθ

cos2 θ +
Nt

R
cos θ − 1 = 0 (7.56)
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cos θ1/2 = −Nt

2R
±
s
1 +

µ
Nt

2R

¶2
(7.57)

Since the angle is positive, the only solution is

θ = arccos

⎡⎣s1 +µNt

2R

¶2
− Nt

2R

⎤⎦ . (7.58)

This concludes the design and analysis of the linear resonator.

7.1.4 The Kerr Lensing Effects

At high intensities, the refractive index in the gain medium becomes intensity
dependent

n = n0 + n2I. (7.59)

The Gaussian intensity profile of the beam creates an intensity dependent
index profile

I(r) =
2P

πw2
exp

h
−2( r

w
)2
i
. (7.60)

In the center of the beam the index can be appoximated by a parabola

n(r) = n00

µ
1−1
2
γ2r2

¶
, where (7.61)

n00 = n0 + n2
2P

πw2
, γ =

1

w2

s
8n2P

n00π
. (7.62)

A thin slice of a parabolic index medium is equivalent to a thin lens. If the
parabolic index medium has a thickness t, then the ABCD matrix describing
the ray propagation through the medium at normal incidence is [16]

MK =

µ
cos γt 1

n00γ
sin γt

−n00γ sin γt cos γt

¶
. (7.63)

Note that, for small t, we recover the thin lens formula (t→ 0, but n00γ
2t =

1/f =const.). If the Kerr medium is placed under Brewster’s angle, we again
have to differentiate between the sagittal and tangential planes. For the
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sagittal plane, the beam size entering the medium remains the same, but for
the tangential plane, it opens up by a factor n00

ws = w (7.64)

wt = w · n00
The spotsize propotional to w2 has to be replaced by w2 =wswt.Therefore,
under Brewster angle incidence, the two planes start to interact during prop-
agation as the gamma parameters are coupled together by

γs =
1

wswt

s
8n2P

n00π
(7.65)

γt =
1

wswt

s
8n2P

n00π
(7.66)

Without proof (see [12]), we obtain the matrices listed in Table 7.2. For low

Optical Element ABCD-Matrix

Kerr Medium
Normal Incidence

MK =

µ
cos γt 1

n00γ
sin γt

−n00γ sin γt cos γt

¶
Kerr Medium
Sagittal Plane

MKs =

µ
cos γst

1
n00γs

sin γst

−n00γs sin γst cos γst

¶
Kerr Medium
Tangential Plane

MKt =

µ
cos γtt

1
n030 γt

sin γtt

−n030 γt sin γtt cos γtt

¶

Table 7.2: ABCD matrices for Kerr media, modelled with a parabolic index
profile n(r) = n00

¡
1−1

2
γ2r2

¢
.

peak power P , the Kerr lensing effect can be neglected and the matrices in
Table 7.2 converge towards those for linear propagation. When the laser is
mode-locked, the peak power P rises by many orders of magnitude, roughly
the ratio of cavity round-trip time to the final pulse width, assuming a con-
stant pulse energy. For a 100 MHz, 10 fs laser, this is a factor of 106. With
the help of the matrix formulation of the Kerr effect, one can iteratively find
the steady state beam waists in the laser. Starting with the values for the
linear cavity, one can obtain a new resonator mode, which gives improved
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values for the beam waists by calculating a new cavity round-trip propaga-
tion matrix based on a given peak power P. This scheme can be iterated
until there is only a negligible change from iteration to iteration. Using such
a simulation, one can find the change in beam waist at a certain position in
the resonator between cw-operation and mode-locked operation, which can
be expressed in terms of the delta parameter

δs,t =
1

p

ws,t(P, z)− ws,t(P = 0, z)

ws,t(P = 0, z)
(7.67)

where p is the ratio between the peak power and the critical power for self-
focusing

p = P/Pcrit, with Pcrit = λ2L/
¡
2πn2n

2
0

¢
. (7.68)

To gain insight into the sensitivity of a certain cavity configuration for KLM,
it is interesting to compute the normalized beam size variations δs,t as a
function of the most critical cavity parameters. For the four-mirror cavity,
the natural parameters to choose are the distance between the crystal and the
pump mirror position, x, and the mirror distance L, see Figure 7.12. Figure
7.15 shows such a plot for the following cavity parameters R1 = R2 = 10 cm,
L1 = 104 cm, L2 = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW.
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Figure 7.15: Beam narrowing ratio δs, for cavity parameters R1 = R2 = 10
cm, L1 = 104 cm, L2 = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW
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The Kerr lensing effect can be exploited in different ways to achieve mode
locking.

Soft-Aperture KLM

In the case of soft-aperture KLM, the cavity is tuned in such a way that
the Kerr lensing effect leads to a shrinkage of the laser mode when mode-
locked. The non-saturated gain in a laser depends on the overlap of the pump
mode and the laser mode. From the rate equations for the radial photon
distribution N(r) and the inversion NP (r) of a laser, which are proportional
to the intensities of the pump beam and the laser beam, we obtain a gain,
that is proportional to the product of N(r) and NP (r).If we assume that the
focus of the laser mode and the pump mode are at the same position and
neglect the variation of both beams as a function of distance, we obtain

g ∼
Z ∞

0

N(r) ∗NP (r)rdr

∼
Z ∞

0

2PP

πw2P
exp

∙
−2r

2

w2P

¸
2

πw2L
exp

∙
−2r

2

w2L

¸
rdr

With the beam cross sections of the pump and the laser beam in the gain
medium, AP = πw2P and AL = πw2L ,we obtain

g ∼ 1

AP +AL
.

If the pump beam is much stronger focused in the gain medium than the laser
beam, a shrinkage of the laser mode cross section in the gain medium leads
to an increased gain. When the laser operates in steady state, the change
in saturated gain would have to be used for the investigation. However, the
general argument carries through even for this case. Figure 7.16 shows the
variation of the laser mode size in and close to the crystal in a soft-aperture
KLM laser due to self-focusing.



7.1. KERR-LENS MODE LOCKING (KLM) 279

Figure 7.16: Variation of laser mode size in and close to the crystal in a soft
aperture KLM laser due to self-focussing.

Hard-Aperture KLM

In a hard-aperture KLM-Laser, one of the resonator arms contains (usually
close to the end mirrors) an aperture such that it cuts the beam slightly.
When Kerr lensing occurs and leads to a shrinkage of the beam at this posi-
tion, the losses of the beam are reduced. Note, that depending on whether
the aperture is positioned in the long or short arm of the resontor, the operat-
ing point of the cavity at which Kerr lensing favours or opposes mode-locking
may be quite different (see Figure 7.13).
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Figure 7.17: Principle mechanism of APM.

7.2 Additive Pulse Mode Locking

Like Kerr-Lens Mode Locking also Additive Pulse Mode Locking (APM) is an
artificial saturable absorber effect [17][18][19][20][21][22]. Figure 7.17 shows
the general principle at work. A small fraction of the light emitted from the
main laser cavity is injected externally into a nonlinear fiber. In the fiber
strong SPM occurs and introduces a significant phase shift between the peak
and the wings of the pulse. In the case shown the phase shift is π

A part of the modified and heavily distorted pulse is reinjected into the
cavity in an interferometrically stable way, such that the injected pulse inter-
feres constructively with the next cavity pulse in the center and destructively
in the wings. This superposition leads to a shorter intracavity pulse and the
pulse shaping generated by this process is identical to the one obtained from
a fast saturable absorber. Again, an artificial saturable absorber action is
generated.
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Figure 7.18: Schematic of nonlinear Mach-Zehnder interferometer.

Figure 7.18 shows a simple nonlinear interferometer. In practice, such
an interferometer can be realized in a self-stabilized way by the use of both
polarizations in an isotropic Kerr medium with polarizer and analyzer as
shown in Figure 7.19.

Figure 7.19: Nonlinear Mach-Zehnder interferometer using nonlinear polar-
ization rotation in a fiber [25].

The Kerr effect rotates the polarization ellipse and thus transforms phase
modulation into amplitude modulation. The operation is in one-to-one cor-
respondence with that of the nonlinear Mach-Zehnder interferometer of Fig.
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7.18. The system of Figure 7.18 can be analyzed rather simply and thus it
is worthwhile to look at the derivation and the implicit assumptions. The
couplers are described by the scattering matrices

S =

∙
r

√
1− r2√

1− r2 −r
¸
. (7.69)

The outputs of the interferometer are then

b1 =
£
r2e−jφ1 + (1− r2)e−jφ2

¤
a, (7.70)

b2 = 2r
√
1− r2 exp

∙
−j φ1 + φ2

2

¸
sin

∙
φ2 − φ1
2

¸
a, (7.71)

φ1 and φ2 are the phase shifts in the two arms composed of both linear "bias"
contributions φbi and the Kerr phase shifts φKi

φi = φbi + φKi, (i = 1, 2), (7.72)

φKi = κi |a|2 , (i = 1, 2). (7.73)

The power in output port two is related to the linear and nonlinear losses

|b2|2 = 2r2
¡
1− r2

¢
(1− cos [φ2 − φ1]) |a|2

= 2r2
¡
1− r2

¢ {(1− cos [φb2 − φb1])+ (7.74)

+ sin [φb2 − φb1] (φK2 − φK1)} |a|2

Depending on the bias phase φb = φb2 − φb1, the amplitude loss is

l = r2
¡
1− r2

¢
(1− cosφb) |a|2 , (7.75)

and the γ−parameter of the equivalent fast saturable absorber is
γ = (κ1 − κ2) r

2
¡
1− r2

¢
sinφb. (7.76)

If the interferometer forms part of a resonant system, the frequency of the
system is affected by the phase shift of the interferometer and in turn affects
the phase.
When the resonant frequencies of the linear system (γ = δ = 0) without

the interferometer should remain the resonant frequencies with the interfer-
ometer, the net phase shift of the interferometer has to be chosen to be zero.
Since a small loss has been assumed and hence r2 À 1− r2

Im
£
r2e−jφb1 +

¡
1− r2

¢
e−jφb2

¤
= Im

£
r2(1− jφb1) +

¡
1− r2

¢
e−jφb2

¤
= 0
(7.77)
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or

φb1 =
− (1− r2)

r2
sinφb2. (7.78)

and cosφb1 = 1. With this adjustment, the response of the interferometer
becomes

b1 ≈ a+∆a = a− (1− r2) (1− cosφ) a

−(1− r2) (φK2 − φK1) sinφ a (7.79)

−jr2φK1 − j(1− r2)φK2 cosφ a,

where we have set φ = φb2. This gives for the parameters of the master
equation l, γ and δ

l = (1− r2) (1− cosφ) , (7.80)

γ = (κ1 − κ2)
¡
1− r2

¢
sinφ, (7.81)

δ = κ1r
2 + κ2(1− r2) cosφ. (7.82)

Due to the special choice of the bias phase there is no contribution of the
nonlinear interferometer to the linear phase. This agrees with expressions
(7.75) and (7.76). The Kerr coefficients are

κ1 = r2
µ
2π

λ

¶
n2
Aeff

LKerr, (7.83)

κ2 =
¡
1− r2

¢µ2π
λ

¶
n2
Aeff

LKerr. (7.84)

Here, λ is the free space wavelength of the optical field, Aeff is the effective
area of the mode, n2 the intensity dependent refractive index, and LKerr is the
length of the Kerr medium. Figure 7.20 is the saturable absorber coefficient
γ normalized to the loss and Kerr effect (note that γ goes to zero when the
loss goes to zero) as a function of r2.
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Figure 7.20: Normalized saturable absorber coefficient γ/
h¡

2π
λ

¢
n2

Aeff
LKerr l

i
as a function of r2 with loss l as parameter [25].

Large saturable absorber coefficients can be achieved at moderate loss
values.
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