
Chapter 6

Passive Modelocking

As we have seen in chapter 5 the pulse width in an actively modelocked laser
is inverse proportional to the fourth root of the curvature in the loss modu-
lation. In active modelocking one is limited to the speed of electronic signal
generators. Therefore, this curvature can never be very strong. However, if
the pulse can modulate the absorption on its own, the curvature of the ab-
sorption modulationcan become large, or in other words the net gain window
generated by the pulse can be as short as the pulse itself. In this case, the
net gain window shortens with the pulse. Therefore, passively modelocked
lasers can generate much shorter pulses than actively modelocked lasers.
However, a suitable saturable absorber is required for passive modelock-

ing. Depending on the ratio between saturable absorber recovery time and fi-
nal pulse width, one may distinguish between the regimes of operation shown
in Figure 6.1, which depicts the final steady state pulse formation process.
In a solid state laser with intracavity pulse energies much lower than the sat-
uration energy of the gain medium, gain saturation can be neglected. Then
a fast saturable absorber must be present that opens and closes the net gain
window generated by the pulse immediately before and after the pulse. This
modelocking principle is called fast saturable absorber modelocking, see Fig-
ure 6.1 a).
In semiconductor and dye lasers usually the intracavity pulse energy ex-

ceeds the saturation energy of the gain medium and so the the gain medium
undergoes saturation. A short net gain window can still be created, almost
independent of the recovery time of the gain, if a similar but unpumped
medium is introduced into the cavity acting as an absorber with a somewhat
lower saturation energy then the gain medium. For example, this can be
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226 CHAPTER 6. PASSIVE MODELOCKING

Figure 6.1: Pulse-shaping and stabilization mechanisms owing to gain and
loss dynamics in passively mode-locked lasers: (a) using only a fast saturable
absorber; (b) using a combination of gain and loss saturation; (c) using a
saturable absorber with a finite relaxation time and soliton formation.

arranged for by stronger focusing in the absorber medium than in the gain
medium. Then the absorber bleaches first and opens a net gain window,
that is closed by the pulse itself by bleaching the gain somewhat later, see
Figure 6.1 b). This principle of modelocking is called slow-saturable absorber
modelocking.

When modelocking of picosecond and femtosecond lasers with semicon-
ductor saturable absorbers has been developed it became obvious that even
with rather slow absorbers, showing recovery times of a few picoseconds, one
was able to generate sub-picosecond pulses resulting in a significant net gain
window after the pulse, see Figure 6.1 c). From our investigation of active
modelocking in the presence of soliton formation, we can expect that such a
situation may still be stable up to a certain limit in the presence of strong
soliton formation. This is the case and this modelocking regime is called
soliton modelocking, since solitary pulse formation due to SPM and GDD
shapes the pulse to a stable sech-shape despite the open net gain window
following the pulse.

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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6.1 Slow Saturable Absorber Mode Locking

Due to the small cross section for stimulated emission in solid state lasers,
typical intracavity pulse energies are much smaller than the saturation energy
of the gain. Therefore, we neglected the effect of gain saturation due to one
pulse sofar, the gain only saturates with the average power. However, there
are gain media which have large gain cross sections like semiconductors and
dyes, see Table 4.1, and typical intracavity pulse energies may become large
enough to saturate the gain considerably in a single pass. In fact, it is this
effect, which made the mode-locked dye laser so sucessful. The model for the
slow saturable absorber mode locking has to take into account the change
of gain in the passage of one pulse [1, 2]. In the following, we consider a
modelocked laser, that experiences in one round-trip a saturable gain and a
slow saturable absorber. In the dye laser, both media are dyes with different
saturation intensities or with different focusing into the dye jets so that gain
and loss may show different saturation energies. The relaxation equation of
the gain, in the limit of a pulse short compared with its relaxation time, can
be approximated by

dg

dt
= −g |A(t)|

2

EL
(6.1)

The coefficient EL is the saturation energy of the gain. Integration of the
equation shows, that the gain saturates with the pulse energy E(t)

E(t) =

Z t

−TR/2
dt|A(t)|2 (6.2)

when passing the gain

g(t) = gi exp [−E(t)/EL] (6.3)

where gi is the initial small signal gain just before the arrival of the pulse. A
similar equation holds for the loss of the saturable absorber whose response
(loss) is represented by q(t)

q(t) = q0 exp [−E(t)/EA] (6.4)
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where EA is the saturation energy of the saturable absorber. If the back-
ground loss is denoted by l, the master equation of mode-locking becomes

1

TR

∂

∂T
A = [gi (exp (−E(t)/EL))A − lA−

q0 exp (−E(t)/EA)]A+
1
Ω2f

∂2

∂t2
A

(6.5)

Here, we have replaced the filtering action of the gain Dg =
1
Ω2f

as

produced by a separate fixed filter. An analytic solution to this integro-
differential equation can be obtained with one approximation: the exponen-
tials are expanded to second order. This is legitimate if the population deple-
tions of the gain and saturable absorber media are not excessive. Consider
one of these expansions:

q0 exp (−E(t)/EA) ≈ q0

∙
1− (E(t)/EA) +

1

2
(E(t)/EA)

2

¸
. (6.6)

We only consider the saturable gain and loss and the finite gain bandwidth.
Than the master equation is given by

TR
∂A(T, t)

∂T
=

∙
g(t)− q(t)− l +Df

∂2

∂t2

¸
A(T, t). (6.7)

The filter dispersion, Df = 1/Ω2f , effectively models the finite bandwidth
of the laser, that might not be only due to the finite gain bandwidth, but
includes all bandwidth limiting effects in a parabolic approximation. Sup-
pose the pulse is a symmetric function of time. Then the first power of the
integral gives an antisymmetric function of time, its square is symmetric.
An antisymmetric function acting on the pulse A(t) causes a displacement.
Hence, the steady state solution does not yield zero for the change per pass,
the derivative 1

TR

∂A
∂T
must be equated to a time shift ∆t of the pulse. When

this is done one can confirm easily that A(t) = Ao sech(t/τ) is a solution of
(6.6) with constraints on its coefficients. Thus we, are looking for a "steady
state" solution A(t, T ) = Ao sech(

t
τ
+ α T

TR
).Note, that α is the fraction of

the pulsewidth, the pulse is shifted in each round-trip due to the shaping by
loss and gain. The constraints on its coefficients can be easily found using
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the following relations for the sech-pulse

E(t) =

Z t

−TR/2
dt|A(t)|2 = W

2

µ
1 + tanh(

t

τ
+ α

T

TR
)

¶
(6.8)

E(t)2 =

µ
W

2

¶2µ
2 + 2tanh(

t

τ
+ α

T

TR
)− sech2( t

τ
+ α

T

TR
)

¶
(6.9)

TR
∂

∂T
A(t, T ) = −α tanh( t

τ
+ α

T

TR
)A(t, T ) (6.10)

1

Ω2f

∂2

∂t2
A(t, T ) =

1

Ω2fτ
2

µ
1− 2sech2( t

τ
+ α

T

TR
)

¶
A(t, T ), (6.11)

substituing them into the master equation (6.5) and collecting the coefficients
in front of the different temporal functions. The constant term gives the
necessary small signal gain

gi

"
1− W

2EL
+

µ
W

2EL

¶2#
= l + q0

"
1− W

2EA
+

µ
W

2EA

¶2#
− 1

Ω2fτ
2
. (6.12)

The constant in front of the odd tanh−function delivers the timing shift per
round-trip

α =
∆t

τ
= gi

"
W

2EL
−
µ

W

2EL

¶2#
− q0

"
W

2EA
−
µ

W

2EA

¶2#
. (6.13)

And finally the constant in front of the sech2-function determines the pulsewidth

1

τ 2
=

Ω2fW
2

8

µ
q0
E2
A

− gi
E2
L

¶
(6.14)

These equations have important implications. Consider first the equation for
the inverse pulsewidth, (6.14). In order to get a real solution, the right hand
side has to be positive. This implies that q0/E2

A > gi/E
2
L. The saturable

absorber must saturate more easily, and, therefore more strongly, than the
gain medium in order to open a net window of gain (Figure 6.2).
This was accomplished in a dye laser system by stronger focusing into

the saturable absorber-dye jet (Reducing the saturation energy for the sat-
urable absorber) than into the gain-dye jet (which was inverted, i.e. optically
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Figure 6.2: Dynamics of a laser mode-locked with a slow saturable absorber.

Figure by MIT OCW.
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pumped). Equation (6.12) makes a statement about the net gain before pas-
sage of the pulse. The net gain before passage of the pulse is

gi − q0 − l = − 1

Ω2fτ
2
+ gi

"
W

2EL
−
µ

W

2EL

¶2#

−q0
"

W

2EA
−
µ

W

2EA

¶2#
.

(6.15)

Using condition (6.14) this can be expressed as

gi − q0 − l = gi

∙
W

2EL

¸
− q0

∙
W

2EA

¸
+

1

Ω2fτ
2 . (6.16)

This gain is negative since the effect of the saturable absorber is larger than
that of the gain. Since the pulse has the same exponential tail after passage
as before, one concludes that the net gain after passage of the pulse is the
same as before passage and thus also negative. The pulse is stable against
noise build-up both in its front and its back. This principle works if the
ratio between the saturation energies for the saturable absorber and gain
χP = EA/EP is very small. Then the shortest pulsewidth achievable with a
given system is

τ =
4√
q0Ωf

EA

W
>

2√
q0Ωf

. (6.17)

The greater sign comes from the fact that our theory is based on the ex-
pansion of the exponentials, which is only true for W

2EA
< 1. If the filter

dispersion 1/Ω2f that determines the bandwidth of the system is again re-
placed by an average gain dispersion g/Ω2g and assuming g = q0. Note that
the modelocking principle of the dye laser is a very faszinating one due to
the fact that actually non of the elements in the system is fast. It is the in-
terplay between two media that opens a short window in time on the scale of
femtoseconds. The media themselves just have to be fast enough to recover
completely between one round trip, i.e. on a nanosecond timescale.
Over the last fifteen years, the dye laser has been largely replaced by

solid state lasers, which offer even more bandwidth than dyes and are on top
of that much easier to handle because they do not show degradation over
time. With it came the need for a different mode locking principle, since the
saturation energy of these broadband solid-state laser media are much higher
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than the typical intracavity pulse energies. The absorber has to open and
close the net gain window.

6.2 Fast Saturable Absorber Mode Locking

The dynamics of a laser modelocked with a fast saturable absorber is again
covered by the master equation (5.21) [3]. Now, the losses q react instantly
on the intensity or power P (t) = |A(t)|2 of the field

q(A) =
q0

1 + |A|2
PA

, (6.18)

where PA is the saturation power of the absorber. There is no analytic
solution of the master equation (5.21) with the absorber response (6.18).
Therefore, we make expansions on the absorber response to get analytic
insight. If the absorber is not saturated, we can expand the response (6.18)
for small intensities

q(A) = q0 − γ|A|2, (6.19)

with the saturable absorber modulation coefficient γ = q0/PA. The constant
nonsaturated loss q0 can be absorbed in the losses l0 = l + q0. The resulting
master equation is, see also Fig. 6.3

TR
∂A(T, t)

∂T
=

∙
g − l0 +Df

∂2

∂t2
+ γ|A|2 + jD2

∂2

∂t2
−j δ|A|2

¸
A(T, t). (6.20)
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Figure 6.3: Schematic representation of the master equation for a passively
modelocked laser with a fast saturable absorber.

Eq. (6.20) is a generalized Ginzburg-Landau equation well known from
superconductivity with a rather complex solution manifold.

6.2.1 Without GDD and SPM

We consider first the situation without SPM and GDD, i.e. D2=δ = 0

TR
∂A(T, t)

∂T
=

∙
g − l0 +Df

∂2

∂t2
+ γ|A|2

¸
A(T, t). (6.21)

Up to the imaginary unit, this equation is still very similar to the NSE. To
find the final pulse shape and width, we look for the stationary solution

TR
∂As(T, t)

∂T
= 0.

Since the equation is similar to the NSE, we try the following ansatz

As(T, t) = As(t) = A0sech
µ
t

τ

¶
. (6.22)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 
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Note, there is

d

dx
sechx = − tanhx sechx, (6.23)

d2

dx2
sechx = tanh2 x sechx − sech3x,

=
¡
sechx− 2 sech3x¢ . (6.24)

Substitution of ansatz (6.22) into the master equation (6.21), assuming steady
state, results in

0 =

∙
(g − l0) +

Df

τ 2

∙
1− 2sech2

µ
t

τ

¶¸
+γ|A0|2sech2

µ
t

τ

¶¸
·A0sech

µ
t

τ

¶
. (6.25)

Comparison of the coefficients with the sech- and sech3-expressions results
in the conditions for the pulse peak intensity and pulse width τ and for the
saturated gain

Df

τ 2
=

1

2
γ|A0|2, (6.26)

g = l0 − Df

τ 2
. (6.27)

From Eq.(6.26) and with the pulse energy of a sech pulse, see Eq.(3.8), W =
2|A0|2τ ,

τ =
4Df

γW
. (6.28)

Eq. (6.28) is rather similar to the soliton width with the exception that
the conservative pulse shaping effects GDD and SPM are replaced by gain
dispersion and saturable absorption. The soliton phase shift per roundtrip is
replaced by the difference between the saturated gain and loss in Eq.(6.28).
It is interesting to have a closer look on how the difference between gain and
loss Df

τ2
per round-trip comes about. From the master equation (6.21) we can

derive an equation of motion for the pulse energy according to

TR
∂W (T )

∂T
= TR

∂

∂T

Z ∞

−∞
|A(T, t)|2 dt (6.29)

= TR

Z ∞

−∞

∙
A(T, t)∗

∂

∂T
A(T, t) + c.c.

¸
dt (6.30)

= 2G(gs,W )W, (6.31)



6.2. FAST SATURABLE ABSORBER MODE LOCKING 235

where G is the net energy gain per roundtrip, which vanishes when steady
state is reached [3]. Substitution of the master equation into (6.30) withZ ∞

−∞

¡
sech2x

¢
dx = 2, (6.32)Z ∞

−∞

¡
sech4x

¢
dx =

4

3
, (6.33)

−
Z ∞

−∞
sechx

d2

dx2
(sechx) dx =

Z ∞

−∞

µ
d

dx
sechx

¶2
dx =

2

3
. (6.34)

results in

G(gs,W ) = gs − l0 − Df

3τ 2
+
2

3
γ|A0|2 (6.35)

= gs − l0 +
1

2
γ|A0|2 = gs − l0 +

Df

τ 2
= 0 (6.36)

with the saturated gain
gs(W ) =

g0

1 + W
PLTR

(6.37)

Equation (6.36) together with (6.28) determines the pulse energy

gs(W ) =
g0

1 + W
PLTR

= l0 − Df

τ 2

= l0 − (γW )
2

16Dg
(6.38)

Figure 6.4 shows the time dependent variation of gain and loss in a laser
modelocked with a fast saturable absorber on a normalized time scale Here,
we assumed that the absorber saturates linearly with intensity up to a max-
imum value q0 = γA20. If this maximum saturable absorption is completely
exploited see Figure 6.5.The minimum pulse width achievable with a given
saturable absorption q0 results from Eq.(6.26)

Df

τ 2
=

q0
2
, (6.39)

to be

τ =

r
2

q0

1

Ωf
. (6.40)
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Figure 6.4: Gain and loss in a passively modelocked laser using a fast sat-
urable absorber on a normalized time scale x = t/τ . The absorber is assumed

to saturate linearly with intensity according to q(A) = q0
³
1− |A|2

A20

´
.

Figure 6.5: Saturation characteristic of an ideal saturable absorber

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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Note that in contrast to active modelocking, now the achievable pulse width
is scaling with the inverse gain bandwidth, which gives much shorter pulses.
Figure 6.4 can be interpreted as follows: In steady state, the saturated gain is
below loss, by about one half of the exploited saturable loss before and after
the pulse. This means, that there is net loss outside the pulse, which keeps
the pulse stable against growth of instabilities at the leading and trailing
edge of the pulse. If there is stable mode-locked operation, there must be
always net loss far away from the pulse, otherwise, a continuous wave signal
running at the peak of the gain would experience more gain than the pulse
and would break through. From Eq.(6.35) follows, that one third of the
exploited saturable loss is used up during saturation of the aborber and
actually only one sixth is used to overcome the filter losses due to the finite
gain bandwidth. Note, there is a limit to the mimium pulse width, which
comes about, because the saturated gain (6.27) is gs = l+ 1

2
q0 and, therefore,

from Eq.(6.40), if we assume that the finite bandwidth of the laser is set by
the gain, i.e. Df = Dg =

g
Ω2g
we obtain for q0 À l

τmin =
1

Ωg
(6.41)

for the linearly saturating absorber model. This corresponds to mode locking
over the full bandwidth of the gain medium, since for a sech-shaped pulse,
the time-bandwidth product is 0.315, and therefore,

∆fFWHM =
0.315

1.76 · τmin =
Ωg

1.76 · π . (6.42)

As an example, for Ti:sapphire this corresponds to Ωg = 270 THz, τmin = 3.7
fs, τFWHM = 6.5 fs.

6.2.2 With GDD and SPM

After understanding what happens without GDD and SPM, we look at the
solutions of the full master equation (6.20) with GDD and SPM. It turns out,
that there exist steady state solutions, which are chirped hyperbolic secant
functions [4]

As(T, t) = A0

µ
sech

µ
t

τ

¶¶(1+jβ)
ejψT/TR , (6.43)

= A0sech
µ
t

τ

¶
exp

∙
jβ ln sech

µ
t

τ

¶
+ jψT/TR

¸
. (6.44)
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Where ψ is the round-trip phase shift of the pulse, which we have to allow for.
Only the intensity of the pulse becomes stationary. There is still a phase-shift
per round-trip due to the difference between the group and phase velocity
(these effects have been already transformed away) and the nonlinear effects.
As in the last section, we can substitute this ansatz into the master equation
and compare coefficients. Using the following relations

d

dx

¡
f(x)b

¢
= bf(x)b−1

d

dx
f(x) (6.45)

d

dx
(sechx)(1+jβ) = − (1 + jβ) tanhx (sechx)(1+jβ) , (6.46)

d2

dx2
(sechx)(1+jβ) =

¡
(1 + jβ)2 − ¡2 + 3jβ − β2

¢
sech2x

¢
(6.47)

(sechx)(1+jβ) . (6.48)

in the master equation and comparing the coefficients to the same functions
leads to two complex equations

1

τ 2
(Df + jD2)

¡
2 + 3jβ − β2

¢
= (γ − jδ) |A0|2, (6.49)

l0 − (1 + jβ)2

τ 2
(Df + jD2) = g − jψ. (6.50)

These equations are extensions to Eqs.(6.26) and (6.27) and are equivalent
to four real equations for the phase-shift per round-trip ψ, the pulse width
τ , the chirp β and the peak power |A0|2 or pulse energy. The imaginary
part of Eq.(6.50) determines the phase-shift only, which is most often not of
importance. The real part of Eq.(6.50) gives the saturated gain

g = l0 − 1− β2

τ 2
Df +

2βD2

τ 2
. (6.51)

The real part and imaginary part of Eq.(6.49) give

1

τ 2
£
Df

¡
2− β2

¢− 3βD2

¤
= γ|A0|2, (6.52)

1

τ 2
£
D2

¡
2− β2

¢
+ 3βDf

¤
= −δ|A0|2. (6.53)

We introduce the normalized dispersion, Dn = D2/Df , and the pulse width
of the system without GDD and SPM, i.e. the width of the purely saturable
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absorber modelocked system, τ 0 = 4Df/(γW ). Deviding Eq.(6.53) by (6.52)
and introducing the normalized nonlinearity δn = δ/γ, we obtain a quadratic
equation for the chirp,

Dn

¡
2− β2

¢
+ 3β¡

2− β2
¢− 3βDn

= −δn,

or after some reodering

3β

2− β2
=

δn +Dn

−1 + δnDn
≡ 1

χ
. (6.54)

Note that χ depends only on the system parameters. Therefore, the chirp is
given by

β = −3
2
χ±

sµ
3

2
χ

¶2
+ 2. (6.55)

Knowing the chirp, we obtain from Eq.(6.52) the pulsewidth

τ =
τ 0
2

¡
2− β2 − 3βDn

¢
, (6.56)

which, with Eq.(6.54), can also be written as

τ =
3τ 0
2
β (χ−Dn) (6.57)

In order to be physically meaning full the pulse width has to be a positive
number, i.e. the product β (χ−Dn) has always to be greater than 0, which
determines the root in Eq.(6.55)

β =

⎧⎨⎩ −32χ+
q¡

3
2
χ
¢2
+ 2, for χ > Dn

−3
2
χ−

q¡
3
2
χ
¢2
+ 2, for χ < Dn

. (6.58)

Figure 6.6(a,b and d) shows the resulting chirp, pulse width and nonlinear
round-trip phase shift with regard to the system parameters [4][5]. A neces-
sary but not sufficient criterion for the stability of the pulses is, that there
must be net loss leading and following the pulse. From Eq.(6.51), we obtain

gs − l0 = −1− β2

τ 2
Df +

2βD2

τ 2
< 0. (6.59)
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If we define the stability parameter S

S = 1− β2 − 2βDn > 0, (6.60)

S has to be greater than zero, as shown in Figure 6.6 (d).

Figure 6.6: (a) Pulsewidth, (b) Chirp parameter, (c) Net gain following the
pulse, which is related to stability. (d) Phase shift per pass. [4]

Figure 6.6 (a-d) indicate that there are essentially three operating regimes.
First, without GDD and SPM, the pulses are always stable. Second, if there
is strong soliton-like pulse shaping, i.e. δn À 1 and −Dn À 1 the chirp is
always much smaller than for positive dispersion and the pulses are soliton-
like. At last, the pulses are even chirp free, if the condition δn = −Dn is
fulfilled. Then the solution is

As(T, t) = A0

µ
sech

µ
t

τ

¶¶
ejψT/TR , for δn = −Dn. (6.61)

Haus, H. A., J. G. Fujimoto, E. P. Ippen. "Structure for additive pulse modelocking." Journal of Optical 
Society of Americas B 8 (1991): 208.
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Note, for this discussion we always assumed a positive SPM-coefficient. In
this regime we also obtain the shortest pulses directly from the system, which
can be a factor 2-3 shorter than by pure saturable absorber modelocking.
Note that Figure 6.6 indicates even arbitrarily shorter pulses if the nonlinear
index, i.e. δn is further increased. However, this is only an artificat of
the linear approximation of the saturable absorber, which can now become
arbitrarily large, compare (6.18) and (6.19). As we have found from the
analysis of the fast saturable absorber model, Figure 6.4, only one sixth of
the saturable absorption is used for overcoming the gain filtering. This is so,
because the saturable absorber has to shape and stabilize the pulse against
breakthrough of cw-radiation. With SPM and GDD this is relaxed. The
pulse shaping can be done by SPM and GDD alone, i.e. soliton formation
and the absorber only has to stabilize the pulse. But then all of the saturable
absorption can be used up for stability, i.e. six times as much, which allows
for additional pulse shorteing by a factor of about

√
6 = 2.5 in a parbolic

filter situation. Note, that for an experimentalist a factor of three is a large
number. This tells us that the 6.5 fs limit for Ti:sapphire derived above from
the saturable absorber model can be reduced to 2.6 fs including GDD and
SPM, which is about one optical cycle of 2.7 fs at a center wavelength of
800nm. At that point all approximations, we have mode so far break down.
If the amount of negative dispersion is reduced too much, i.e. the pulses
become to short, the absorber cannot keep them stable anymore.

If there is strong positive dispersion, the pulses again become stable and
long, but highly chirped. The pulse can then be compressed externally, how-
ever not completely to their transform limit, because these are nonlinearly
chirped pulses, see Eq.(6.43).

In the case of strong solitonlike pulse shaping, the absorber doesn’t have
to be really fast, because the pulse is shaped by GDD and SPM and the
absorber has only to stabilize the soliton against the continuum. This regime
has been called Soliton mode locking.

6.3 Soliton Mode Locking

If strong soliton formation is present in the system, the saturable absorber
doesn’t have to be fast [6][7][8], see Figure 6.7. The master equation descibing
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the mode locking process is given by

TR
∂A(T, t)

∂T
=

∙
g − l + (Df + jD)

∂2

∂t2
− jδ|A(T, t)|2 − q(T, t)

¸
A(T, t).

(6.62)
The saturable absorber obeys a separate differential equation that describes
the absorber response to the pulse in each round trip

∂q(T, t)

∂t
= −q − q0

τA
− |A(T, t)|

2

EA
. (6.63)

Where τA is the absorber recovery time and EA the saturation energy. If the
soliton shaping effects are much larger than the pulse

Figure 6.7: Response of a slow saturable absorber to a soliton-like pulse.
The pulse experiences loss during saturation of the absorber and filter losses.
The saturated gain is equal to these losses. The loss experienced by the
continuum, lc must be higher than the losses of the soliton to keep the soliton
stable.

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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Figure 6.8: The continuum, that might grow in the opten net gain window
following the pulse is spread by dispersion into the regions of high absorption.

shaping due to the filter and the saturable absorber, the steady state
pulse will be a soliton and continuum contribution similar to the case of
active mode locking with strong soliton formation as discussed in section 5.5

A(T, t) =

µ
A sech(

t

τ
) + ac(T, t)

¶
e
−jφ0 T

TR (6.64)

Figure 6.9: Normalized gain, soliton and continuum. The continuum is a
long pulse exploiting the peak of the gain

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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The continuum can be viewed as a long pulse competing with the soliton
for the available gain. In the frequency domain, see Figure 6.9, the soliton
has a broad spectrum compared to the continuum. Therefore, the continuum
experiences the peak of the gain, whereas the soliton spectrum on average
experiences less gain. This advantage in gain of the continuum has to be
compensated for in the time domain by the saturable absorber response, see
Figure 6.8. Whereas for the soliton, there is a balance of the nonlinearity
and the dispersion, this is not so for the continuum. Therefore, the contin-
uum is spread by the dispersion into the regions of high absorption. This
mechanism has to clean up the gain window following the soliton and caused
by the slow recovery of the absorber. As in the case of active modelocking,
once the soliton is too short, i.e. a too long net-gain window arises, the loss
of the continuum may be lower than the loss of the soliton, see Figure 6.7
and the continuum may break through and destroy the single pulse soliton
solution. As a rule of thumb the absorber recovery time can be about 10
times longer than the soliton width. This modelocking principle is especially
important for modelocking of lasers with semiconductor saturable absorbers,
which show typical absorber recovery times that may range from 100fs-100
ps. Pulses as short as 13fs have been generated with semiconductor saturable
absorbers [11]. Figure 6.10 shows the measured spectra from a Ti:sapphire
laser modelocked with a saturable absorber for different values for the intra-
cavity dispersion. Lowering the dispersion, increases the bandwidth of the
soliton and therefore its loss, while lowering at the same time the loss for the
continuum. At some value of the dispersion the laser has to become unstabile
by break through of the continuum. In the example shown, this occurs at
a dispersion value of about D = −500fs2. The continuum break-through is
clearly visible by the additional spectral components showing up at the cen-
ter of the spectrum. Reducing the dispersion even further might lead again
to more stable but complicated spectra related to the formation of higher
order solitons. Note the spectra shown are time averaged spectra.
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Figure 6.10: Measured (–) and simulated (- - -) spectra from a semiconduc-
tor saturable absorber modelocked Ti:sapphire laser for various values of the
net intracavity dispersion.

Figure 6.11: Measured (–-) and simulated (- - -) autocorrelations corre-
sponding to the spectra shown in Figure 6.10.

Figure by MIT OCW.

Figure by MIT OCW.

802

|D| = 1200 fs2

|D| = 1000 fs2

|D| = 800 fs2 fFWHM = 0.97 THz

fFWHM = 0.85 THz

fFWHM = 0.68 THz

|D| = 500 fs2

|D| = 300 fs2

|D| = 200 fs2

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
, a

. u
.

804

Wavelength, nm

806 808 810 812

-2000 -1000 0 1000 2000

τFWHM = 312 fs

τFWHM = 391 fs

τFWHM = 469 fs|D| = 1200 fs2

|D| = 1000 fs2

|D| = 800 fs2

|D| = 500 fs2

|D| = 300 fs2

|D| = 200 fs2

A
ut

oc
or

re
la

tio
n,

 a
. u

.

Time, fs



246 CHAPTER 6. PASSIVE MODELOCKING

relation of the emitted pulse, see Figure 6.11. The details of the spectra and
autocorrelation may strongly depend on the detailed absorber response.

6.4 Dispersion Managed Soliton Formation

The nonlinear Schrödinger equation describes pulse propagation in a medium
with continuously distributed dispersion and self-phase-modulation. For
lasers generating pulses as short as 10 fs and below, it was first pointed out by
Spielmann et al. that large changes in the pulse occur within one roundtrip
and that the ordering of the pulse-shaping elements within the cavity has a
major effect on the pulse formation [9]. The discrete action of linear disper-
sion in the arms of the laser resonator and the discrete, but simultaneous,
action of positive SPM and positive GDD in the laser crystal cannot any
longer be neglected. The importance of strong dispersion variations for the
laser dynamics was first discovered in a fiber laser and called stretched pulse
modelocking [11]. The positive dispersion in the Er-doped fiber section of a
fiber ring laser was balanced by a negative dispersive passive fiber. The pulse
circulating in the ring was stretched and compressed by as much as a factor
of 20 in one roundtrip. One consequence of this behavior was a dramatic
decrease of the nonlinearity and thus increased stability against the SPM
induced instabilities. The sidebands, due to periodic perturbations of the
soliton, as discussed in section 3.6, are no longer observed (see Fig. 6.12).

Figure 6.12: Spectra of mode-locked Er-doped fiber lasers operating in the
conventional soliton regime, i.e. net negative dispersion and in the stretched
pulse mode of operation at almost zero average dispersion [11].

Tamura, K., E. P. Ippen, H. A. Haus, and L. E. Nelson. "77-fs pulse generation from a stretched-pulse 
mode-locked all-fiber ring laser." Optics Letters 18 (1993): 1080-1082. 

The continuum leads to a background pedestal in the intensity autocor-
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The energy of the output pulses could be increased 100 fold. The mini-
mum pulsewidth was 63 fs, with a bandwdith much broader than the erbium
gain bandwidth [12]. Figure 6.12 also shows the spectral enhancement of the
fiber laser in the dispersion managed regime. The generation of ultrashort
pulses from solid state lasers like Ti:sapphire has progressed over the past
decade and led to the generation of pulses as short as 5 fs directly from the
laser. At such short pulse lengths the pulse is streched up to a factor of ten
when propagating through the laser crystal creating a dispersion managed
soliton [10]. The spectra generated with these lasers are not of simple shape
for many reasons. Here, we want to consider the impact on the spectral
shape and laser dynamcis due to dispersion managed soliton formation.

Figure 6.13: (a) Schematic of a Kerr-lens mode-locked Ti:sapphire laser:
P’s, prisms; L, lens; DCM’s, double-chirped mirror; TiSa, Ti:sapphire. (b)
Correspondence with dispersion-managed fiber transmission.

A mode-locked laser producing ultrashort pulses consists at least of a gain

Figure by MIT OCW.
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medium (Ti:sapphire crystal) and dispersion balancing components (mirrors,
prism pairs), see Fig. 6.13 a. The system can be decomposed into the res-
onator arms and the crystal, see Fig. 6.13 b. To achieve ultrashort pulses,
the dispersion-balancing components should produce near-zero net dispersion
while the dispersion element(s) individually produce significant group delay
over the broad bandwidth of the laser pulse. This fact suggests an analogy
with dispersion-managed pulse propagation along a dispersion-managed fiber
transmission link [14]. A system with sufficient variation of dispersion can
support solitary waves. One can show that the Kerr nonlinearity produces
a self-consistent nonlinear scattering potential that permits formation of a
perodic solution with a simple phase factor in a system with zero net dis-
persion. The pulses are analogous to solitons in that they are self-consistent
solutions of the Hamiltonian (lossless) problem as the conventional solitons
discussed above. But they are not secant hyperbolic in shape. Figure 6.14
shows a numerical simulation of a self-consistent solution of the Hamiltonian
pulse-propagation problem in a linear medium of negative dispersion and
subsequent propagation in a nonlinear medium of positive dispersion and
positive self-phase modulation, following the equation

∂

∂z
A(z, t) = jD(z)

∂2

∂t2
A(z, t)− jδ(z)|A|2A(z, t) (6.65)

In Fig. 6.15 the steady state intensity profiles are shown at the center of
the negative dispersion segment over 1000 roundtrips. It is clear that the solu-
tion repeats itself from period to period, i.e. there is a new solitary wave that
solves the piecewise nonlinear Schroedinger equation 6.65, dispersion man-
aged soliton. In contrast to the conventional soliton the dispersion mangaged
soliton of equation 6.65 (with no SAM and no filtering) resemble Gaussian
pulses down to about −10 dB from the peak, but then show rather compli-
cated structure, see Fig. 6.15.The dispersion map D(z) used is shown as an
inset in Figure 6.14. One can additionally include saturable gain, Lorentzian
gain filtering, and a fast saturable absorber. Figure 6.14 shows the behavior
in one period (one round trip through the resonator) including these effects.
The response of the absorber is q(A) = qo/(1+ |A|2/PA), with qo = 0.01/mm
and PA = 1 MW. The bandwidth-limited gain is modeled by the Lorentzian
profile with gain bandwidth 2π×43 THz. The filtering and saturable absorp-
tion reduce the spectral and temporal side lobes of the Hamiltonian problem.
As can be inferred from Fig. 6.14, the steady state pulse formation can be
understood in the following way. By symmetry the pulses are chirp free in
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Figure 6.14: Pulse shaping in one round trip. The negative segment has no
nonlinearity.

the middle of the dispersion cells. A chirp free pulse starting in the center of
the gain crystal, i.e. nonlinear segment is spectrally broadened by the SPM
and disperses in time due to the GVD, which generates a rather linear chirp
over the pulse. After the pulse is leaving the crystal it experiences negative
GVD during propagation through the left or right resonator arm, which is
compressing the positively chirped pulse to its transform limit at the end of
the arm, where an output coupler can be placed. Back propagation towards
the crystal imposes a negative chirp, generating the time reversed solution of
the nonliner Schrödinger equation (6.65). Therefore, subsequent propagation
in the nonlinear crystal is compressing the pulse spectrally and temporally
to its initial shape in the center of the crystal. The spectrum is narrower in
the crystal than in the negative-dispersion sections, because it is negatively
prechirped before it enters the SPM section and spectral spreading occurs
again only after the pulse has been compressed. This result further explains
that in a laser with a linear cavity, for which the negative dispersion is lo-
cated in only one arm of the laser resonator (i.e. in the prism pair and no
use of chirped mirrors) the spectrum is widest in the arm that contains the
negative dispersion . In a laser with a linear cavity, for which the negative
dispersion is equally distributed in both arms of the cavity, the pulse runs

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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through the dispersion map twice per roundtrip. The pulse is short at each
end of the cavity and, most importantly, the pulses are identical in each pass
through the crystal, which exploits the saturable absorber action (Kerr-Lens
Modelocking in this case, as will be discussed in the next chapter) twice
per roundtrip, in contrast to an asymmetric dispersion distribution in the
resonator arms. Thus a symmetric dispersion distribution leads to an effec-
tive saturable absorption that is twice as strong as an asymmetric dispersion
distribution resulting in substantially shorter pulses. Furthermore, the dis-
persion swing between the negative and positive dispersion sections is only
half, which allows for shorter dispersion-managed solitons operating at the
same average power level.

Figure 6.15: Simulation of the Hamiltonian problem. Intensity profiles at
the center of the negatively dispersive segment are shown for successive
roundtrips. The total extent in 1000 roundtrips. D = D(±) = ±60 fs2/mm,
segment of crystal length L = 2 mm, τFWHM = 5.5 fs, δ = 0 for D < 0, δ = 1
(MW mm)−1 for D > 0. [10]

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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To further illustrate the efficiency of the dispersion managed soliton for-
mation, we present a series of simulations that start with a linear segment
of negative dispersion and a nonlinear segment of positive dispersion of the
same magnitude, saturable absorber action, and filtering.

Figure 6.16: Sequence of pulse profiles in the center of the negatively dis-
persive segment for three magnitudes of SPM. to = 3 fs, with solid curves
(5.5 fs) for δ = 1 (MW mm)−1, dashed-dotted curve (7 fs) for δ = 0.5 (MW
mm)−1, and dashed cuves for no SPM of δ = 0. The dispersion map is of
Fig. 6.14. The output coupler loss is 3%.[10]

The dashed curve in Figure 6.16 shows the pulse shape for gain, loss,
saturable absorption and gain filtering only. We obtained the other traces
by increasing the SPM while keeping the energy fixed through adjustment
of the gain. As one can see, increasing the SPM permits shorter pulses.
The shortest pulse can be approximately three times shorter than the pulse
without SPM. The parameters chosen for the simulations are listed in the
figure caption. In this respect, the behavior is similar to the fast saturable
absorber case with conventional soliton formation as discussed in the last
section.
A major difference in the dispersion managed soliton case is illustrated in

Fig. 6.17. The figure shows the parameter ranges for a dispersion-managed
soliton system (no gain, no loss, no filtering) that is unbalanced such as to
result in the net dispersion that serves as the abscissa of the figure. Each
curve gives the locus of energy versus net cavity dispersion for a stretching

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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ratio S = LD/τ 2FWHM (or pulse width with fixed crystal length L). One can
see that for pulse width longer than 8 fs with crystal length L = 2 mm,
no solution of finite energy exists in the dispersion managed system for zero
or positive net dispersion. Pulses of durations longer than 8 fs require net
negative dispersion. Hence one can reach the ultrashort dispersion managed
soliton operation at zero net dispersion only by first providing the system
with negative dispersion. At the same energy, one can form a shorter pulse
by reducing the net dispersion, provided that the 8 fs threshold has been
passed. For a fixed dispersion swing ±D, the stretching increases quadrat-
ically with the spectral width or the inverse pulse width. Long pulses with
no stretching have a sech shape. For stretching ratios of 3-10 the pulses are
Gaussian shaped. For even larger stretching ratios the pulse spectra become
increasingly more flat topped, as shown in Fig. 6.16.

Figure 6.17: Energy of the pulse in the lossless dispersion-managed system
with stretching S = LD/τ 2FWHM or for a fixed crystal length L and pulsewidth
as parameters; D = 60 fs2/mm for Ti:sapphire at 800 nm [10].

To gain insight into the laser dynamics and later on in their noise and
tuning behavior, it is advantageous to formulate also a master equation ap-
proach for the dispersion managed soliton case [16]. Care has to be taken of
the fact that the Kerr-phase shift is produced by a pulse of varying amplitude
and width as it circulates around the ring. The Kerr-phase shift for a pulse

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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of constant width, δ|a|2 had to be replaced by a phase profile that mimics
the average shape of the pulse, weighted by its intensity. Therefore, the SPM
action is replaced by

δ|A|2 = δo|Ao|2
µ
1− µ

t2

τ 2

¶
(6.66)

where Ao is the pulse amplitude at the position of minimum width. The
Kerr-phase profile is expanded to second order in t. The coefficient δo and
µ are evaluated variationally. The saturable absorber action is similarly
expanded. Finally, the net intracavity dispersion acting on average on the
pulse is replaced by the effective dispersion Dnet in the resonator within one
roundtrip. The master equation becomes

TR
∂

∂T
A = (g − l)A+

Ã
1

Ω2f
+ jDnet

!
∂2

∂t2
A

+(γo − jδo)|Ao|2
µ
1− µ

t2

τ 2

¶
A

(6.67)

This equation has Gaussian-pulse solutions. The master equation (6.67)
is a patchwork, it is not an ordinary differential equation. The coefficients in
the equation depend on the pulse solution and eventually have to be found
iteratively. Nevertheless, the equation accounts for the pulse shaping in the
system in an analytic fashion. It will allow us to extend the conventional
soliton perturbation theory to the case of dispersion managed solitons.
There is one more interesting property of the stretched pulse operation

that needs to be emphasized. Dispersion managed solitons may form even
when the net dispersion as seen by a linearly propagating pulse is zero or
slightly positive. This is a surprising result which was discovered in the
study of dispersion managed soliton propagation [14]. It turns out that the
stretched pulse changes its spectrum during propagation through the two
segments of fiber with opposite dispersion or in the case of a Ti:Sapphire
laser in the nonlinear crystal. The spectrum in the segment with normal
(positive) dispersion is narrower, than in the segment of anomalous (nega-
tive) dispersion, see Figure 6.14. The pulse sees an effective net negative
dispersion, provided that the positive Dnet is not too large. In (6.67) the
Dnet is to be replaced by Deff which can be computed variationally. Thus,
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dispersion managed soliton-like solutions can exist even when Dnet is zero.
However, they exist only if the stretching factor is large, see Figure 6.17.
A remarkable property of the dispersion managed solitons is that they do

not radiate (generate continuum) even though they propagate in a medium
with abrupt dispersion changes. This can be understood by the fact, that the
dispersion mangaged soliton is a solution of the underlaying dynamics incor-
porating already the periodic dispersion variations including the Kerr-effect.
This is in contrast to the soliton in a continuously distributed dispersive en-
vironment, where periodic variations in dispersion and nonlinearity leads to
radiation.
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